Browse Source

Working BME680 task

eink
Maximilian Grau 2 years ago
parent
commit
76a062dfeb
  1. 2
      .gitignore
  2. 7
      .vscode/c_cpp_properties.json
  3. 4
      .vscode/launch.json
  4. 11
      Makefile
  5. 34
      cubemx/.mxproject
  6. 2
      cubemx/Core/Inc/FreeRTOSConfig.h
  7. 2
      cubemx/Core/Inc/main.h
  8. 4
      cubemx/Core/Src/dma.c
  9. 11
      cubemx/Core/Src/freertos.c
  10. 20
      cubemx/Core/Src/gpio.c
  11. 2
      cubemx/Core/Src/spi.c
  12. 6
      cubemx/Makefile
  13. 147
      cubemx/Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_1.c
  14. 436
      cubemx/Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_4.c
  15. 10
      cubemx/voc-sensor.ioc
  16. 164
      src/bmeSPI.cxx
  17. 35
      src/main.cxx

2
.gitignore vendored

@ -3,4 +3,4 @@ build/
!.vscode/c_cpp_properties.json
!.vscode/launch.json
!.vscode/tasks.json
*.cubemx/*.mxproject
cubemx/.mxproject

7
.vscode/c_cpp_properties.json vendored

@ -14,9 +14,10 @@
"${workspaceFolder}/cubemx/Drivers/CMSIS/Include"
],
"defines": [
"STM32F1",
"STM32F103CB",
"STM32F103xB"
"STM32L1",
"STM32L152RC",
"STM32L152xC",
"BME68X_DO_NOT_USE_FPU"
],
"compilerPath": "arm-none-eabi-gcc",
"cStandard": "c11",

4
.vscode/launch.json vendored

@ -9,10 +9,10 @@
"request": "launch",
"name": "Debug (ST-LINK)",
"cwd": "${workspaceFolder}",
"executable": "${workspaceFolder}/build/debug/roomlightV2.elf",
"executable": "${workspaceFolder}/build/debug/voc-sensor.elf",
"servertype": "stutil",
"device": "STM32F103CB",
"runToMain": true
}
]
}
}

11
Makefile

@ -2,12 +2,17 @@ TARGET := voc-sensor
RTOS := freertos
DEVICE := stm32l152rc
DEFS := BME68X_DO_NOT_USE_FPU
INCDIRS := \
src \
src/BME68x-Sensor-API
SOURCES := \
src/main.cxx \
src/handlers.cxx
SOURCES := \
src/bmeSPI.cxx \
src/main.cxx \
src/handlers.cxx \
src/BME68x-Sensor-API/bme68x.c
# Actual build engine
include core/mk/include.mk

34
cubemx/.mxproject

File diff suppressed because one or more lines are too long

2
cubemx/Core/Inc/FreeRTOSConfig.h

@ -100,7 +100,7 @@ to exclude the API function. */
* The CMSIS-RTOS V2 FreeRTOS wrapper is dependent on the heap implementation used
* by the application thus the correct define need to be enabled below
*/
#define USE_FreeRTOS_HEAP_4
#define USE_FreeRTOS_HEAP_1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS

2
cubemx/Core/Inc/main.h

@ -58,6 +58,8 @@ void Error_Handler(void);
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
#define SPI_CS_Pin GPIO_PIN_12
#define SPI_CS_GPIO_Port GPIOB
/* USER CODE BEGIN Private defines */
/* USER CODE END Private defines */

4
cubemx/Core/Src/dma.c

@ -43,10 +43,10 @@ void MX_DMA_Init(void)
/* DMA interrupt init */
/* DMA1_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0);
HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0);
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
}

11
cubemx/Core/Src/freertos.c

@ -55,6 +55,13 @@ const osThreadAttr_t defaultTask_attributes = {
.priority = (osPriority_t) osPriorityNormal,
.stack_size = 128 * 4
};
/* Definitions for sensor */
osThreadId_t sensorHandle;
const osThreadAttr_t sensor_attributes = {
.name = "sensor",
.priority = (osPriority_t) osPriorityNormal,
.stack_size = 512 * 4
};
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN FunctionPrototypes */
@ -62,6 +69,7 @@ const osThreadAttr_t defaultTask_attributes = {
/* USER CODE END FunctionPrototypes */
void StartDefaultTask(void *argument);
extern void sensorTask(void *argument);
void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
@ -107,6 +115,9 @@ void MX_FREERTOS_Init(void) {
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of sensor */
sensorHandle = osThreadNew(sensorTask, NULL, &sensor_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */

20
cubemx/Core/Src/gpio.c

@ -51,6 +51,9 @@ void MX_GPIO_Init(void)
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PC13 PC14 PC15 PC0
PC1 PC2 PC3 PC4
PC5 PC6 PC7 PC8
@ -82,17 +85,22 @@ void MX_GPIO_Init(void)
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 PB10
PB11 PB12 PB3 PB4
PB5 PB6 PB7 PB8
PB9 */
PB11 PB3 PB4 PB5
PB6 PB7 PB8 PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9;
|GPIO_PIN_11|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PtPin */
GPIO_InitStruct.Pin = SPI_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(SPI_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PD2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;

2
cubemx/Core/Src/spi.c

@ -39,7 +39,7 @@ void MX_SPI2_Init(void)
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_SOFT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;

6
cubemx/Makefile

@ -1,5 +1,5 @@
##########################################################################################################################
# File automatically-generated by tool: [projectgenerator] version: [3.10.0-B14] date: [Wed Jan 06 00:56:58 CET 2021]
# File automatically-generated by tool: [projectgenerator] version: [3.10.0-B14] date: [Wed Jan 06 23:48:20 CET 2021]
##########################################################################################################################
# ------------------------------------------------
@ -47,8 +47,8 @@ Middlewares/Third_Party/FreeRTOS/Source/stream_buffer.c \
Middlewares/Third_Party/FreeRTOS/Source/tasks.c \
Middlewares/Third_Party/FreeRTOS/Source/timers.c \
Middlewares/Third_Party/FreeRTOS/Source/CMSIS_RTOS_V2/cmsis_os2.c \
Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_4.c \
Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM3/port.c
Middlewares/Third_Party/FreeRTOS/Source/portable/GCC/ARM_CM3/port.c \
Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_1.c
# ASM sources
ASM_SOURCES = \

147
cubemx/Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_1.c vendored

@ -0,0 +1,147 @@
/*
* FreeRTOS Kernel V10.0.1
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*
* The simplest possible implementation of pvPortMalloc(). Note that this
* implementation does NOT allow allocated memory to be freed again.
*
* See heap_2.c, heap_3.c and heap_4.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#if( configSUPPORT_DYNAMIC_ALLOCATION == 0 )
#error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0
#endif
/* A few bytes might be lost to byte aligning the heap start address. */
#define configADJUSTED_HEAP_SIZE ( configTOTAL_HEAP_SIZE - portBYTE_ALIGNMENT )
/* Allocate the memory for the heap. */
/* Allocate the memory for the heap. */
#if( configAPPLICATION_ALLOCATED_HEAP == 1 )
/* The application writer has already defined the array used for the RTOS
heap - probably so it can be placed in a special segment or address. */
extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#else
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#endif /* configAPPLICATION_ALLOCATED_HEAP */
/* Index into the ucHeap array. */
static size_t xNextFreeByte = ( size_t ) 0;
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
void *pvReturn = NULL;
static uint8_t *pucAlignedHeap = NULL;
/* Ensure that blocks are always aligned to the required number of bytes. */
#if( portBYTE_ALIGNMENT != 1 )
{
if( xWantedSize & portBYTE_ALIGNMENT_MASK )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
}
}
#endif
vTaskSuspendAll();
{
if( pucAlignedHeap == NULL )
{
/* Ensure the heap starts on a correctly aligned boundary. */
pucAlignedHeap = ( uint8_t * ) ( ( ( portPOINTER_SIZE_TYPE ) &ucHeap[ portBYTE_ALIGNMENT ] ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
}
/* Check there is enough room left for the allocation. */
if( ( ( xNextFreeByte + xWantedSize ) < configADJUSTED_HEAP_SIZE ) &&
( ( xNextFreeByte + xWantedSize ) > xNextFreeByte ) )/* Check for overflow. */
{
/* Return the next free byte then increment the index past this
block. */
pvReturn = pucAlignedHeap + xNextFreeByte;
xNextFreeByte += xWantedSize;
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
}
#endif
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
/* Memory cannot be freed using this scheme. See heap_2.c, heap_3.c and
heap_4.c for alternative implementations, and the memory management pages of
http://www.FreeRTOS.org for more information. */
( void ) pv;
/* Force an assert as it is invalid to call this function. */
configASSERT( pv == NULL );
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* Only required when static memory is not cleared. */
xNextFreeByte = ( size_t ) 0;
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return ( configADJUSTED_HEAP_SIZE - xNextFreeByte );
}

436
cubemx/Middlewares/Third_Party/FreeRTOS/Source/portable/MemMang/heap_4.c vendored

@ -1,436 +0,0 @@
/*
* FreeRTOS Kernel V10.0.1
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://www.FreeRTOS.org
* http://aws.amazon.com/freertos
*
* 1 tab == 4 spaces!
*/
/*
* A sample implementation of pvPortMalloc() and vPortFree() that combines
* (coalescences) adjacent memory blocks as they are freed, and in so doing
* limits memory fragmentation.
*
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
* memory management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#include "FreeRTOS.h"
#include "task.h"
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#if( configSUPPORT_DYNAMIC_ALLOCATION == 0 )
#error This file must not be used if configSUPPORT_DYNAMIC_ALLOCATION is 0
#endif
/* Block sizes must not get too small. */
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( xHeapStructSize << 1 ) )
/* Assumes 8bit bytes! */
#define heapBITS_PER_BYTE ( ( size_t ) 8 )
/* Allocate the memory for the heap. */
#if( configAPPLICATION_ALLOCATED_HEAP == 1 )
/* The application writer has already defined the array used for the RTOS
heap - probably so it can be placed in a special segment or address. */
extern uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#else
static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];
#endif /* configAPPLICATION_ALLOCATED_HEAP */
/* Define the linked list structure. This is used to link free blocks in order
of their memory address. */
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
size_t xBlockSize; /*<< The size of the free block. */
} BlockLink_t;
/*-----------------------------------------------------------*/
/*
* Inserts a block of memory that is being freed into the correct position in
* the list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.
*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
/*
* Called automatically to setup the required heap structures the first time
* pvPortMalloc() is called.
*/
static void prvHeapInit( void );
/*-----------------------------------------------------------*/
/* The size of the structure placed at the beginning of each allocated memory
block must by correctly byte aligned. */
static const size_t xHeapStructSize = ( sizeof( BlockLink_t ) + ( ( size_t ) ( portBYTE_ALIGNMENT - 1 ) ) ) & ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
/* Create a couple of list links to mark the start and end of the list. */
static BlockLink_t xStart, *pxEnd = NULL;
/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_t xFreeBytesRemaining = 0U;
static size_t xMinimumEverFreeBytesRemaining = 0U;
/* Gets set to the top bit of an size_t type. When this bit in the xBlockSize
member of an BlockLink_t structure is set then the block belongs to the
application. When the bit is free the block is still part of the free heap
space. */
static size_t xBlockAllocatedBit = 0;
/*-----------------------------------------------------------*/
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
vTaskSuspendAll();
{
/* If this is the first call to malloc then the heap will require
initialisation to setup the list of free blocks. */
if( pxEnd == NULL )
{
prvHeapInit();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Check the requested block size is not so large that the top bit is
set. The top bit of the block size member of the BlockLink_t structure
is used to determine who owns the block - the application or the
kernel, so it must be free. */
if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
{
/* The wanted size is increased so it can contain a BlockLink_t
structure in addition to the requested amount of bytes. */
if( xWantedSize > 0 )
{
xWantedSize += xHeapStructSize;
/* Ensure that blocks are always aligned to the required number
of bytes. */
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
{
/* Byte alignment required. */
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
{
/* Traverse the list from the start (lowest address) block until
one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* If the end marker was reached then a block of adequate size
was not found. */
if( pxBlock != pxEnd )
{
/* Return the memory space pointed to - jumping over the
BlockLink_t structure at its start. */
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
/* This block is being returned for use so must be taken out
of the list of free blocks. */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* If the block is larger than required it can be split into
two. */
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
{
/* This block is to be split into two. Create a new
block following the number of bytes requested. The void
cast is used to prevent byte alignment warnings from the
compiler. */
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
/* Calculate the sizes of two blocks split from the
single block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free blocks. */
prvInsertBlockIntoFreeList( pxNewBlockLink );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
xFreeBytesRemaining -= pxBlock->xBlockSize;
if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* The block is being returned - it is allocated and owned
by the application and has no "next" block. */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif
configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
return pvReturn;
}
/*-----------------------------------------------------------*/
void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
if( pv != NULL )
{
/* The memory being freed will have an BlockLink_t structure immediately
before it. */
puc -= xHeapStructSize;
/* This casting is to keep the compiler from issuing warnings. */
pxLink = ( void * ) puc;
/* Check the block is actually allocated. */
configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
configASSERT( pxLink->pxNextFreeBlock == NULL );
if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
{
if( pxLink->pxNextFreeBlock == NULL )
{
/* The block is being returned to the heap - it is no longer
allocated. */
pxLink->xBlockSize &= ~xBlockAllocatedBit;
vTaskSuspendAll();
{
/* Add this block to the list of free blocks. */
xFreeBytesRemaining += pxLink->xBlockSize;
traceFREE( pv, pxLink->xBlockSize );
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
}
( void ) xTaskResumeAll();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
/*-----------------------------------------------------------*/
size_t xPortGetFreeHeapSize( void )
{
return xFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
size_t xPortGetMinimumEverFreeHeapSize( void )
{
return xMinimumEverFreeBytesRemaining;
}
/*-----------------------------------------------------------*/
void vPortInitialiseBlocks( void )
{
/* This just exists to keep the linker quiet. */
}
/*-----------------------------------------------------------*/
static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
/* Ensure the heap starts on a correctly aligned boundary. */
uxAddress = ( size_t ) ucHeap;
if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
{
uxAddress += ( portBYTE_ALIGNMENT - 1 );
uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
}
pucAlignedHeap = ( uint8_t * ) uxAddress;
/* xStart is used to hold a pointer to the first item in the list of free
blocks. The void cast is used to prevent compiler warnings. */
xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
xStart.xBlockSize = ( size_t ) 0;
/* pxEnd is used to mark the end of the list of free blocks and is inserted
at the end of the heap space. */
uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
uxAddress -= xHeapStructSize;
uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
pxEnd = ( void * ) uxAddress;
pxEnd->xBlockSize = 0;
pxEnd->pxNextFreeBlock = NULL;
/* To start with there is a single free block that is sized to take up the
entire heap space, minus the space taken by pxEnd. */
pxFirstFreeBlock = ( void * ) pucAlignedHeap;
pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
/* Only one block exists - and it covers the entire usable heap space. */
xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
/* Work out the position of the top bit in a size_t variable. */
xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}
/*-----------------------------------------------------------*/
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
BlockLink_t *pxIterator;
uint8_t *puc;
/* Iterate through the list until a block is found that has a higher address
than the block being inserted. */
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
{
/* Nothing to do here, just iterate to the right position. */
}
/* Do the block being inserted, and the block it is being inserted after
make a contiguous block of memory? */
puc = ( uint8_t * ) pxIterator;
if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
{
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
pxBlockToInsert = pxIterator;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
/* Do the block being inserted, and the block it is being inserted before
make a contiguous block of memory? */
puc = ( uint8_t * ) pxBlockToInsert;
if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
{
if( pxIterator->pxNextFreeBlock != pxEnd )
{
/* Form one big block from the two blocks. */
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxEnd;
}
}
else
{
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
}
/* If the block being inserted plugged a gab, so was merged with the block
before and the block after, then it's pxNextFreeBlock pointer will have
already been set, and should not be set here as that would make it point
to itself. */
if( pxIterator != pxBlockToInsert )
{
pxIterator->pxNextFreeBlock = pxBlockToInsert;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}

10
cubemx/voc-sensor.ioc

@ -6,8 +6,8 @@ ProjectManager.MainLocation=Core/Src
Dma.SPI2_TX.1.MemInc=DMA_MINC_ENABLE
ProjectManager.ProjectFileName=voc-sensor.ioc
Dma.SPI2_RX.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority
FREERTOS.Tasks01=defaultTask,24,128,StartDefaultTask,Default,NULL,Dynamic,NULL,NULL
NVIC.DMA1_Channel5_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:true
FREERTOS.Tasks01=defaultTask,24,128,StartDefaultTask,Default,NULL,Dynamic,NULL,NULL;sensor,24,512,sensorTask,As external,NULL,Dynamic,NULL,NULL
NVIC.DMA1_Channel5_IRQn=true\:5\:0\:true\:false\:true\:false\:false\:true
ProjectManager.KeepUserCode=true
Mcu.PinsNb=8
Mcu.UserName=STM32L152RCTx
@ -53,7 +53,7 @@ SPI2.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,BaudRatePrescaler
Mcu.Pin6=VP_FREERTOS_VS_CMSIS_V2
Mcu.Pin7=VP_SYS_VS_tim2
ProjectManager.RegisterCallBack=
FREERTOS.IPParameters=Tasks01,configCHECK_FOR_STACK_OVERFLOW
FREERTOS.IPParameters=Tasks01,configCHECK_FOR_STACK_OVERFLOW,FootprintOK,HEAP_NUMBER
RCC.LSE_VALUE=32768
RCC.AHBFreq_Value=32000000
SPI2.BaudRatePrescaler=SPI_BAUDRATEPRESCALER_4
@ -89,6 +89,7 @@ VP_SYS_VS_tim2.Signal=SYS_VS_tim2
PA14.Mode=Serial_Wire
Dma.SPI2_TX.1.Priority=DMA_PRIORITY_LOW
PB14.Mode=Full_Duplex_Master
FREERTOS.HEAP_NUMBER=1
NVIC.TIM2_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:true
File.Version=6
SPI2.CalculateBaudRate=8.0 MBits/s
@ -126,6 +127,7 @@ ProjectManager.ToolChainLocation=
RCC.LSI_VALUE=37000
NVIC.TimeBaseIP=TIM2
PA14.Signal=SYS_JTCK-SWCLK
FREERTOS.FootprintOK=true
ProjectManager.HeapSize=0x200
NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
Dma.SPI2_TX.1.Instance=DMA1_Channel5
@ -139,7 +141,7 @@ RCC.PWRFreq_Value=32000000
SPI2.Direction=SPI_DIRECTION_2LINES
Dma.SPI2_RX.0.Direction=DMA_PERIPH_TO_MEMORY
PB13.Mode=Full_Duplex_Master
NVIC.DMA1_Channel4_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:true
NVIC.DMA1_Channel4_IRQn=true\:5\:0\:true\:false\:true\:false\:false\:true
RCC.APB1Freq_Value=32000000
Dma.Request0=SPI2_RX
Dma.SPI2_TX.1.MemDataAlignment=DMA_MDATAALIGN_BYTE

164
src/bmeSPI.cxx

@ -0,0 +1,164 @@
#include "FreeRTOS.h"
#include "gpio.h"
#include "main.h"
#include "spi.h"
#include "task.h"
#include <cstring>
#include "BME68x-Sensor-API/bme68x.h"
constexpr auto SPI_DEVICE = &hspi2;
uint8_t txBuffer[512];
struct bme68x_dev bmeSensor;
volatile int8_t res;
struct bme68x_conf bmeConf;
struct bme68x_heatr_conf bmeHeaterConf;
struct bme68x_data bmeData[3];
uint16_t del_period;
uint32_t time_ms = 0;
uint8_t n_fields;
uint16_t sampleCount = 1;
/* Heater temperature in degree Celsius */
uint16_t temp_prof[10] = {200, 240, 280, 320, 360, 360, 320, 280, 240, 200};
/* Heating duration in milliseconds */
uint16_t dur_prof[10] = {100, 100, 100, 100, 100, 100, 100, 100, 100, 100};
void setChipSelect(bool state)
{
HAL_GPIO_WritePin(SPI_CS_GPIO_Port, SPI_CS_Pin, state ? GPIO_PIN_RESET : GPIO_PIN_SET);
}
void waitForSpiFinished()
{
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
}
// SPI read function map
BME68X_INTF_RET_TYPE bme68x_spi_read(uint8_t reg_addr, uint8_t *reg_data, uint32_t len, void *)
{
setChipSelect(true);
HAL_SPI_Transmit_DMA(SPI_DEVICE, &reg_addr, 1);
waitForSpiFinished();
HAL_SPI_Receive_DMA(SPI_DEVICE, reg_data, len);
waitForSpiFinished();
setChipSelect(false);
return 0;
}
// SPI write function map
BME68X_INTF_RET_TYPE bme68x_spi_write(uint8_t reg_addr, const uint8_t *reg_data, uint32_t len,
void *)
{
if (len > 512)
return 1;
txBuffer[0] = reg_addr;
std::memcpy(&txBuffer[1], reg_data, len);
setChipSelect(true);
HAL_SPI_Transmit_DMA(SPI_DEVICE, const_cast<uint8_t *>(txBuffer), len + 1);
waitForSpiFinished();
setChipSelect(false);
return 0;
}
// Delay function maps
void bme68x_delay_us(uint32_t period, void *)
{
HAL_Delay(period / 1000);
}
int8_t bme68x_spi_init(struct bme68x_dev *bme)
{
int8_t rslt = BME68X_OK;
if (bme != NULL)
{
// printf("SPI Interface\n");
bme->read = bme68x_spi_read;
bme->write = bme68x_spi_write;
bme->intf = BME68X_SPI_INTF;
bme->delay_us = bme68x_delay_us;
bme->intf_ptr = SPI_DEVICE;
bme->amb_temp =
25; /* The ambient temperature in deg C is used for defining the heater temperature */
}
else
{
rslt = BME68X_E_NULL_PTR;
}
return rslt;
}
void bme68x_check_rslt(const char *, int8_t)
{
}
void bmeRun()
{
res = bme68x_spi_init(&bmeSensor);
bme68x_check_rslt("bme68x_interface_init", res);
res = bme68x_init(&bmeSensor);
bme68x_check_rslt("bme68x_init", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
res = bme68x_get_conf(&bmeConf, &bmeSensor);
bme68x_check_rslt("bme68x_get_conf", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
bmeConf.filter = BME68X_FILTER_OFF;
bmeConf.odr =
BME68X_ODR_NONE; /* This parameter defines the sleep duration after each profile */
bmeConf.os_hum = BME68X_OS_16X;
bmeConf.os_pres = BME68X_OS_1X;
bmeConf.os_temp = BME68X_OS_2X;
res = bme68x_set_conf(&bmeConf, &bmeSensor);
bme68x_check_rslt("bme68x_set_conf", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
bmeHeaterConf.enable = BME68X_ENABLE;
bmeHeaterConf.heatr_temp_prof = temp_prof;
bmeHeaterConf.heatr_dur_prof = dur_prof;
bmeHeaterConf.profile_len = 10;
res = bme68x_set_heatr_conf(BME68X_SEQUENTIAL_MODE, &bmeHeaterConf, &bmeSensor);
bme68x_check_rslt("bme68x_set_heatr_conf", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
res = bme68x_set_op_mode(BME68X_SEQUENTIAL_MODE, &bmeSensor);
bme68x_check_rslt("bme68x_set_op_mode", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
// printf("Sample, TimeStamp(ms), Temperature(deg C), Pressure(Pa), Humidity(%%), Gas "
// "resistance(ohm), Status, Profile index, Measurement index\n");
while (1)
{
del_period =
bme68x_get_meas_dur(BME68X_SEQUENTIAL_MODE, &bmeConf) + bmeHeaterConf.heatr_dur_prof[0];
vTaskDelay(del_period);
// time_ms = HAL_GetTick();
res = bme68x_get_data(BME68X_SEQUENTIAL_MODE, bmeData, &n_fields, &bmeSensor);
bme68x_check_rslt("bme68x_get_data", res);
/* Check if res == BME68X_OK, report or handle if otherwise */
for (uint8_t i = 0; i < n_fields; i++)
{
// printf("%u, %u, %d, %u, %u, %u, 0x%x, %d, %d\n", sampleCount,
// time_ms,(bmeData[i].temperature / 100), bmeData[i].pressure, (bmeData[i].humidity /
// 1000),bmeData[i].gas_resistance,
// bmeData[i].status,data[i].gas_index,data[i].meas_index);
}
}
return;
}

35
src/main.cxx

@ -0,0 +1,35 @@
#include "main.h"
#include "FreeRTOS.h"
#include "task.h"
extern TaskHandle_t sensorHandle;
extern void bmeRun();
//--------------------------------------------------------------------------------------------------
void notifySensorTask()
{
auto higherPriorityTaskWoken = pdFALSE;
vTaskNotifyGiveFromISR(sensorHandle, &higherPriorityTaskWoken);
portYIELD_FROM_ISR(higherPriorityTaskWoken);
}
//--------------------------------------------------------------------------------------------------
extern "C" void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *)
{
notifySensorTask();
}
//--------------------------------------------------------------------------------------------------
extern "C" void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *)
{
notifySensorTask();
}
//--------------------------------------------------------------------------------------------------
extern "C" void sensorTask(void *)
{
bmeRun();
while (1)
{
}
}
Loading…
Cancel
Save